One-Pot, Four-Component Synthesis of Fully Substituted 1,3,4-Oxadiazole Derivatives from (Isocyanoimino)triphenylphosphorane, a Primary Amine, an Aromatic Carboxylic Acid, and Chloroacetone

by Ali Ramazani*a), Fatemeh Zeinali Nasrabadia), and Yavar Ahmadib)

a) Chemistry Department, Zanjan University, P.O. Box 45195-313, Zanjan, Iran (phone: +98-241-5152572; fax: +98-241-5152477; e-mail: aliramazani@yahoo.com)
 b) Young Researchers Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran

The 1:1 imine intermediate **7** generated by the addition of a primary amine **2** to chloroacetone (**1**) is trapped by (isocyanoimino)triphenylphosphorane (**4**) in the presence of an aromatic carboxylic acid **3** and leads to the formation of the corresponding iminophosphorane intermediate **9** (*Scheme 2*). The 1,3,4-oxadiazole derivatives **5** are then formed *via* an intramolecular aza-*Wittig* reaction of the iminophosphorane intermediate **9**. The reactions were completed under neutral conditions at room temperature. The fully substituted 1,3,4-oxadiazole derivatives **5** were produced in high yields (*Table*).

Introduction. – In recent years, several synthetic methods have been reported for the preparation of (isocyanoimino)triphenylphosphorane (= N-(triphenylphosphoranylidene)isocyanamide; CN-N=PPh₃; **4**) [1] [2]. There are several reports on the use of **4** in the synthesis of metal complexes [1] [2]. However, application of **4** in the synthesis of organic compounds is fairly rare [3-13]. As part of our ongoing program to develop efficient and robust methods for the preparation of organic compounds [14-28], we sought to develop a convenient preparation of fully substituted 1,3,4-oxadiazole derivatives 5a-5q. Herein, we report a four-component reaction, which, starting from readily available chloroacetone (**1**), affords fully substituted 1,3,4-oxadiazole derivatives 5a-5q (*Scheme 1*).

Scheme 1. Four-Component Synthesis of 1,3,4-Oxadiazoles 5 (see Table)

O CI + R-NH₂ + Ar OH + Ph₃P=N-N=C
$$\xrightarrow{\oplus}$$
 $\xrightarrow{CH_2Cl_2}$ \xrightarrow{CI} $\xrightarrow{N-N}$ Ar + Ph₃P=C \xrightarrow{N} 1 2 3 4 5

Results and Discussion. – The 1:1 imine intermediate (= N-alkylideneamine intermediate) generated by the condensation reaction of chloroacetone (1) with primary amines 2 is trapped by 4 in the presence of aromatic carboxylic acids 3 and leads to the formation of 1,3,4-oxadiazole derivatives 5 and Ph₃P=O (6; *Scheme 1* and *Table*). The reaction proceeds smoothly and cleanly under mild and neutral conditions, and no side reactions were observed. The structures of the products were deduced from

Table. Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives **5a-5q** from Chloroacetone **(1)**, Primary Amine **2**, and Carboxylic Acid **3** in the Presence of (Isocyanoimino)triphenylphosphorane **(4)**

R	Ar	Product		Yield [%]a)	M.p. [°]	IR ^b) [cm ⁻¹]
Bn	Ph	CI N N N Ph	5a	85	82-84	1608, 1449
Bn	4 -Br- C_6H_4	BnHN O Br	5b	87	99 – 101	1602, 1482
Bn	4-MeO–C ₆ H ₄	CI N-N O OMe	5c	77	oil	1616, 1496
Bn	4-Me-C ₆ H ₄	CI N N N Me	5d	78	70-72	1618, 1499
Bn	4-Cl–C ₆ H ₄	BnHN O CI	5e	75	80 – 82	1608, 1486
4-Methylbenzyl	Ph	CI N N N Ph	5f	76	71 – 73	1609, 1449
4-Methoxy- benzyl	4-Br–C ₆ H ₄	CI N-N Br	5g	75	95 – 97	1605, 1478
Bn	4-NC-C ₆ H ₄	BnHN O CN	5h	75	oil	1656, 1494

Table (cont.)

R	Ar	Product		Yield [%] ^a)	M.p. [°]	IR ^b) [cm ⁻¹]
2-Chlorobenzyl	Ph	CI NH O Ph	5i	82	65 – 67	1609, 1475
Bn	3,4-Me ₂ C ₆ H ₃	BnHN O Me	5j	70	oil	1617, 1455
Bn	4-F-C ₆ H ₄	BnHN O F	5k	80	77 – 79	1612, 1499
4-Fluorobenzyl	4 -Me $-C_6H_4$	CI N N Me	51	70	oil	1614, 1499
Furan-2-ylmethyl	4-Cl–C ₀ H ₄	CI NH O CI	5m	80	79 – 81	1609, 1485
Bn	2-Br–C ₆ H ₄	CI N N Br	5n	86	oil	1602, 1455
3,4-Dichorobenzyl	Ph	CI N N N Ph	50	85	73 – 75	1612, 1471

CC 11		
Table (cont.	١
Iuoic 1	COIII.	,

R	Ar	Product		Yield [%] ^a)	M.p. [°]	$IR^b)$ [cm ⁻¹]
3-(Trifluoromethyl)- benzyl	Ph	CI N N N Ph	5р	77	oil	1614, 1452
Allyl	Ph	CF ₃	5q	70	oil	1649, 1451

a) Yield of isolated 5. b) Two main absorptions in KBr.

their IR, ${}^{1}\text{H-}$ and ${}^{13}\text{C-}\text{NMR}$, and mass spectra. For example, the ${}^{1}\text{H-}\text{NMR}$ spectrum of **5a** consisted of an AB pattern for the H-atoms of the CH₂Cl group ($\delta(H)$ 3.69 and 3.75 (${}^{2}J(H,H)=12.0\,\text{Hz}$)), and a second AB pattern for the H-atoms of the PhCH₂ group ($\delta(H)$ 3.96 and 4.07 (${}^{2}J(H,H)=11.5\,\text{Hz}$)), a s for NH ($\delta(H)$ 2.22), and a s for Me ($\delta(H)$ 1.77). The Ar groups exhibited characteristic signals in the aromatic region of the spectrum. The ${}^{1}\text{H-}$ decoupled ${}^{13}\text{C-}\text{NMR}$ spectrum of **5a** showed 14 distinct signals; partial assignment of these signals is given in the *Exper. Part.* The ${}^{1}\text{H-}$ and ${}^{13}\text{C-}\text{NMR}$ spectra of compounds **5b** – **5q** were similar to those of **5a**, except for the aromatic moieties, which exhibited characteristic signals with appropriate chemical shifts.

A mechanistic pathway for the reaction is provided in *Scheme 2*. On the basis of the chemistry of isocyanides, it is reasonable to assume that the first step may involve the

Scheme 2. Proposed Mechanism for the Formation of Sterically Congested 1,3,4-Oxadiazole Derivatives

5

formation of imine **7** by the condensation reaction of chloroacetone (**1**) with the primary amine **2**. The next step may involve nucleophilic addition of (isocyanoimino)-triphenylphosphorane (**4**) to the imine intermediate **7**, which is facilitated by its protonation with the carboxylic acid **3**, leading to nitrilium intermediate **8**. This intermediate may be attacked by the conjugate base of the carboxylic acid to form the 1:1:1 adduct **9**. The intermediate **9** then undergoes an intramolecular aza-*Wittig* reaction [3–13] of the iminophosphorane moiety with the ester C=O group to afford the isolated sterically congested 1,3,4-oxadiazole derivative **5** by removal of Ph₃P=O (**6**) from intermediate **10**.

We also used 1,1-dichloroacetone, 1,3-dichloroacetone, 2-chloroacetophenone, 2-bromoacetophenone, trifluoroacetone, and 2,2-dichlorobutyrophenone instead of chloroacetone **1** in this reaction, but no corresponding products **5** were observed. In all the cases, several colored products were detected by TLC monitoring.

Conclusions. – We believe that the reported method offers a mild, simple, and efficient route for the preparation of fully substituted 1,3,4-oxadiazol derivatives of type **5**. Ease of workup, high yields, and fairly mild reaction conditions make it a useful addition to modern synthetic methodologies. Other aspects of this synthetic process are under investigation.

This work was supported by the Zanjan University and the Iran National Science Foundation (INSF).

Experimental Part

General. (Isocyanoimino)triphenylphosphorane (= N-triphenylphosphoranylidene)isocyanamide; **4**) was prepared based on reported procedures [1][2]. Other starting materials and solvents were obtained from M-erck (Germany) and F-luka (Switzerland) and were used without further purification. Reaction monitoring by TLC and NMR (no by-products formed). Prep. TLC: plates coated with M-erck silica gel F_{254} powder. M.p.: E-lectrothermal-P-100 apparatus; uncorrected. IR Spectra: P-lacetrometer; P-in cm $^{-1}$. H- and P-lacetrometer; P-lacetrometer;

General Procedure. To a magnetically stirred soln. of primary amine 2 (1 mmol), chloroacetone (1; 1 mmol), and (isocyanoimino)triphenylphosphorane (4; 1 mmol) in CH₂Cl₂ (5 ml) was added dropwise a soln. of benzoic acid derivative 3 (1 mmol) in CH₂Cl₂ (5 ml) at r.t. over 15 min. The mixture was stirred for 12 h. The solvent was evaporated and the viscous residue purified by prep. TLC (silica gel F_{254} , petroleum ether/AcOEt 4:1). Purified 5a - 5q were obtained as yellow powders or yellow oils. For yields, m.p., and IR of 5a - 5q, see $Table^1$).

N-Benzyl-N-[2-chloro-1-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)ethyl]amine (= α -(Chloromethyl)- α -methyl-5-phenyl-N-(phenylmethyl)-1,3,4-oxadiazol-2-methanamine; **5a**): Yellow powder. IR (KBr): 3456, 3269, 2927, 1608, 1449, 1069. 1 H-NMR (CDCl₃): 1.77 (s, Me); 2.23 (s, NH); 3.69, 3.76 (AB, 2 J = 12.3, CH₂Cl); 3.96, 4.07 (AB, 2 J = 11.5, PhCH₂); 7.24–8.07 (m, 10 arom H). 1 C-NMR (CDCl₃): 22.53 (Me); 47.82, 50.24. (2 CH₂); 57.58 (CNH); 127.00, 127.31, 128.27, 128.51, 129.07, 131.8 (10 CH); 123.70, 139.33 (2 C); 165.24, 167.77 (2 C=N). EI-MS: 327 (M^+), 187 (16), 149 (33), 105 (70), 91 (100), 76 (29), 43 (54). Anal. calc. for C₁₈H₁₈ClN₃O (327.81): C 65.95, H 5.53, N 12.82; found: C 65.83, H 5.49 N 12.77.

¹⁾ Supplementary material (characterization data of **5b** – **5q**) may be obtained upon request from the senior author *A*. *R*

REFERENCES

- [1] H. Stolzenberg, B. Weinberger, W. P. Fehlhammer, F. G. Pühlhofer, R. Weiss, *Eur. J. Inorg. Chem.* **2005**, *21*, 4263.
- [2] T. W. Chiu, Y. H. Liu, K. M. Chi, Y. S. Wen, K. L. Lu, Inorg. Chem. 2005, 44, 6425.
- [3] A. Ramazani, Y.Ahmadi, M. Rouhani, N. Shajari, A. Souldozi, Heteroat. Chem. 2010, 21, 368.
- [4] A. Souldozi, A. Ramazani, N. Bouslimani, R. Welter, Tetrahedron Lett. 2007, 48, 2617.
- [5] A. Souldozi, A. Ramazani, Tetrahedron Lett. 2007, 48, 1549.
- [6] A. Souldozi, A. Ramazani, Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 3191.
- [7] A. Ramazani, N. Shajari, A. Mahyari, Y. Ahmadi, Mol. Diversity 2010, 15, 521.
- [8] A. Souldozi, A. Ramazani, Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 2344.
- [9] A. Ramazani, A. Souldozi, *ARKIVOC* **2008** (xvi), 235.
- [10] A. Ramazani, M. Rouhani, A. Rezaei, N. Shajari, A. Souldozi, Helv. Chim. Acta 2011, 4, 282.
- [11] A. Ramazani, S. Salmanpour, A. Souldozi, Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 97.
- [12] A. Souldozi, K. Ślepokura, T. Lis, A. Ramazani, Z. Naturforsch., B 2007, 62, 835.
- [13] A. Ramazani, A. Rezaei, Org. Lett. 2010, 12, 2852.
- [14] A. Ramazani, E. Ahmadi, A. R. Kazemizadeh, L. Dolatyari, N. Noshiranzadeh, I. Eskandari, A. Souldozi, *Phosphorus, Sulfur Silicon Relat. Elem.* 2005, 180, 2419.
- [15] A. Ramazani, A. T. Mahyari, M. Rouhani, A. Rezaei, Tetrahedron Lett. 2009, 50, 5625.
- [16] A. Ramazani, N. Noshiranzadeh, A. Ghamkhari, K. Ślepokura, T. Lis, Helv. Chim. Acta 2008, 91, 2252.
- [17] A. R. Kazemizadeh, A. Ramazani, J. Braz. Chem. Soc. 2009, 20, 309.
- [18] A. Ramazani, S. A. Hossaini-Alemi, Phosphorus, Sulfur Silicon Relat. Elem. 2001, 176, 237.
- [19] A. Ramazani, A. Bodaghi, Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 1615.
- [20] A. Ramazani, A. R. Kazemizadeh, E. Ahmadi, Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 1781.
- [21] A. Ramazani, A. Mahyari, Helv. Chim. Acta 2010, 93, 2203.
- [22] A. Ramazani, A. Azizian, M. Bandpey, N. Noshiranzadeh, *Phosphorus, Sulfur Silicon Relat. Elem.* 2006, 181, 2731.
- [23] A. Ramazani, E. Ahmadi, Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 2725.
- [24] M. Heshmati-Gonbari, A. Ramazani, A. Souldozi, Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 309
- [25] J. Azizian, A. Ramazani, M. Haji, Helv. Chim. Acta 2011, 94, 371.
- [26] A. Ramazani, A. Morsali, B. Ganjeie, A. R. Kazemizadeh, E. Ahmadi, R. Kempe, I. Hertle, Z. Naturforsch., B 2005, 60, 569.
- [27] A. Ramazani, A. Rezaei, A. T. Mahyari, M. Rouhani, M. Khoobi, Helv. Chim. Acta 2010, 93, 2033.
- [28] A. T. Mahyari, N. Shajari, A. R. Kazemizadeh, K. Ślepokura, T. Lis, A. Ramazani, Z. Naturforsch., B 2007, 62, 829.

Received September 16, 2010